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ABSTRACT 

 

Fisheries have become increasingly important to manage and conserve, and this is 

particularly challenging for data-poor species. Elasmobranchs are commonly considered 

data-poor or data-limited species. Their life history characteristics make their populations 

susceptible to depletion from fishing pressures and habitat degradation. Thus, it is 

important to understand the movement patterns and habitat use of the targeted species as 

well as the models used in the stock assessment for the species. This thesis involves 

developing techniques and information for data-poor species, such as elasmobranchs. The 

objectives of this research were to 1) identify the wintering grounds for the cownose rays 

(Rhinoptera bonasus) from Chesapeake Bay, 2) determine summer and fall movement 

patterns for this species, and 3) understand how changes in the data input (i.e., catch and 

effort) affect the parameter estimates from a simple surplus production model. 

Cownose rays have received negative attention in Chesapeake Bay for 

presumably heavy predation on commercial shellfish. Although the population size is 

unknown, there are concerns about the increase in abundance of this species, resulting in 

the need for management to control its population size. However, there are many 

questions regarding the movement patterns and habitat use for cownose rays, particularly 

for males. A total of 16 cownose rays in Chesapeake Bay were tagged with pop-up 

satellite archival tags (PSATs) to determine their wintering grounds and summer and fall 

movement patterns. Six tags (3 on females and 3 on males) were released on the 

programmed date and contained data on temperature, pressure (for depths) and light-level 

(for geolocations). The end locations from the satellite tags indicated that both sexes 

migrated to the coastal waters of central Florida for the winter. Females were exited 

Chesapeake Bay at the end of September and early October and migrated south to 

Florida. Males left the bay at the end of July and traveled northward to a second feeding 

ground in the coastal waters of southern New England. At the end of summer and early 

fall, the males made the southerly migration down the coast to Florida. There were no 

diel differences detected; however, male rays occupied a wider depth and temperature 

range compared to females.  

Data-poor stocks are often regulated based on surplus production models when 

only catch and effort data are available. However, reported catch and effort rarely equal 

the true values. Reported data may not include bycatch, illegal fishing or local 

consumption, resulting in higher true catch and effort values than that reported. I used 

ASPIC (A Surplus Production Model Incorporating Covariates) software to examine the
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effects of underestimated catch and effort on parameter and ratio estimates (e.g., MSY, 

F/Fmsy and B/Bmsy) in a production model. Using three example fisheries, I determined 

that a fishery with constant underestimation of catch and effort over time can be managed 

based on the parameter estimates from the production model. The parameter estimates 

either yielded no errors or were underestimated by the same percentage as the 

underreported data; however, the ratios of parameter estimates were free of error due to 

cancellation of errors. Trends in underestimation of catch and effort (e.g., improved 

reporting rates or increased illegal fishing) caused the errors in the estimates from the 

production model to be highly variable and scenario-dependent. Consequently, if 

underreporting of catch and effort is suspected, I would recommend conducting 

additional simulations specific to the fishery.



 

 
 

DEVELOPING METHODOLOGIES FOR STUDYING ELASMOBRANCHS 

AND OTHER DATA-POOR SPECIES 
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CHAPTER 1 

 INTRODUCTION 
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With increasing demand for seafood, it is increasingly important to manage 

fisheries sustainably. Poor management can lead to population crashes as well as have 

negative effects on the livelihood of fishermen (e.g., Georges Bank cod fishery, Fogarty 

and Murawski 1998). However, well-managed fisheries generally require knowing the 

migration patterns, habitat utilization and the population structure and size of the targeted 

species. Such information can be difficult to obtain for many species for a variety of 

reasons including: 1) lack of management or surveys in smaller fisheries (e.g., artisanal 

fisheries), 2) low economic value, resulting from being a bycatch species, 3) habitat use 

that is challenging to assess (e.g., for highly migratory species and deep sea organisms). 

Often these animals are considered to be data-poor species because they lack the 

necessary information to conduct a detailed stock assessment. Data-poor species may be 

subjected to sources of fishing pressure that are either unknown or unaccounted for when 

assessing the health of the stock.  

Elasmobranchs are in the subclass of Chondrichthyes, or cartilaginous fishes, 

which include sharks, skates and rays. Many elasmobranchs are intermediate (‘meso’) or 

top predators. This subclass plays an important role in the food web having both direct 

and indirect effects on the community (Stevens et al. 2000; Myers et al. 2007; Pennino et 

al. 2013). Although they show considerable variation in life history traits, elasmobranchs 

tend to be K-selected species. Life history characteristics of K-selected species include 

relatively late maturity, slow growth, large maximum size, low fecundity, long gestation 

periods and long longevity (Hoenig and Gruber 1990). As a result of these characteristics, 

elasmobranch populations have a slow intrinsic rate of growth (r), meaning the 

populations are slow to rebound if depleted. Population declines can be a consequence of 
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direct or indirect fishing as well as habitat degradation. Shark fisheries, as well as many 

other fisheries on similar K-selected species, are known to have a “boom and bust” 

fishing pattern if not properly managed, causing either local or widespread population 

depletion. This “boom and bust” pattern became apparent in the 1940-1970 period when 

shark fisheries expanded (Compagno 1990), followed by a rapid decline due to 

overharvesting. Large-bodied and shallow-water elasmobranch populations tend to be at 

the highest risk of depletion due to their slower population growth and higher fishing 

pressures near shore (Dulvy et al. 2014). They are often considered data-poor species 

because information about their life history, habitat use and/or population size are 

unknown. It is imperative to understand all these attributes for a species that is targeted 

by a fishery in order for their population to maintain a sustainable size.  

The cownose ray, Rhinoptera bonasus (Mitchill 1815), is a common 

elasmobranch species in Chesapeake Bay. Although there is speculation that the 

abundance of this ray has increased in the past few decades (Merriner and Smith 1979; 

Smith and Merriner 1985), the true population size is unknown. Soft-shelled clams (Mya 

arenaria) are a preferred prey item of cownose rays (Merriner and Smith 1979; Smith 

and Merriner 1985; Fisher 2010). In the 1950’s, the soft-shelled clam fishery was 

developed in the Chesapeake Bay along with an increase in oyster farming; however 

Tropical Storm Agnes in 1972 decimated this clam stock, causing a dietary shift to 

oysters (Merriner and Smith 1979). After shellfish stocks declined due to environmental 

and biological factors, their continued stasis was blamed on cownose rays (Merriner and 

Smith 1979; Smith and Merriner 1985; Peterson et al. 2001; Myers et al. 2007; Fisher 
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2009). As a result, more attention has been brought to studying the movements, biology 

and methods of determent of this elasmobranch species (Fisher 2009).  

Several options have been explored to reduce the impact of rays on shellfish 

including the initiation of a commercial fishery. One possible fishery option was to target 

the male rays at a sustainable level, leaving a sufficient number of males so the 

reproductive output of the stock is not affected. For every gravid female ray fished, two 

rays are removed from the population, therefore decreasing the male population after 

mating would theoretically ensure that the number of pups produced each year would 

remain the same. This would subsequently reduce pressure on oyster predation if the 

males were feeding on the same shellfish stocks as females. However, it is unknown 

where males migrate after mating season because they are not seen in shallow waters of 

Chesapeake Bay during the remaining part of summer. If adult female cownose rays were 

targeted, it would be best to fish the rays after pupping. In addition, managers need to 

carefully regulate the fishery to ensure that the female population size stays above a 

viable abundance.  We need to understand the habitat use and migration patterns for both 

sexes in order to create a sustainable fishery. 

Pop-up satellite archival tags (PSATs) are commonly used to assess large scale 

movements of aquatic animals (e.g., Lutcavage et al. 1999; Musyl et al. 2011). PSATs 

are electronic tags that can internally store data and transmit messages to a satellite. The 

satellite tags record temperature, pressure (to calculate depth) and light-levels (to estimate 

location) and store the data at pre-set intervals. These tags have the ability to be released 

from the animals at a pre-programmed date; thus, it is not necessary to recapture the 

animals to retrieve information from the tags. PSATs can also be programmed to be 
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released from animals prior to the automated pop-off date based on two scenarios: 1) if 

the tag is at a constant depth for a programmed amount of days (e.g., 3 days), as a lack of 

vertical movement likely indicates a mortality, or 2) if the tag falls below a specified 

depth to prevent sensor failure from high pressure, which may also indicate that the 

tagged animal died. Once the tag surfaces, it will begin transmitting signals to the passing 

Argos satellites in which the geographical location (geolocation) of the tag can be 

calculated. The Argos locations are calculated based on the Doppler effect and require 4+ 

transmitted messages for accuracy between 250- 1500 m (Argos 2015). In addition, when 

the tag is at the surface it will transmit short, compressed messages of the archived data 

to passing Argos satellites. More detailed records of the archived data on temperatures, 

depths and light-levels are available if the tag is recovered.  

Geolocations of the tagged animal are calculated based on civil twilight (when the 

center of the sun is 6° below the horizon). This is also better known as dawn (first light) 

and dusk (last light). The light-level curves are the steepest during these times, and 

therefore are used to estimate the longitude and latitude (Hill 1994). The halfway point 

between dawn and dusk is used to obtain the local noon or local midnight, which is then 

used to estimate the longitude. The latitude is then estimated based on the observed dawn 

and dusk times compared to the predicted dawn and dusk from the longitude calculation 

(Hill 1994).  

In 2007, a targeted, subsidized fishery for cownose rays in Chesapeake Bay was 

launched by the Virginia Marine Resources Commission. The goal of promoting the new 

fishery was to reduce the total number of this species in the bay with the intention of 

lessening predation on the commercial bivalve species, eastern oysters (Crassostrea 
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virginica) and hard-shelled clams (Mercenaria mercenaria). Because cownose rays are a 

typical elasmobranch species, careful monitoring and assessments should be completed to 

ensure the population in the Chesapeake Bay is not overharvested. However, the 

movement and migration patterns of the cownose rays who mate and pup in the 

Chesapeake Bay are only partially known. My objectives for this chapter are to: 1) verify 

the wintering grounds for the cownose rays from Chesapeake Bay and 2) determine 

movement patterns of the male cownose rays after mating in the bay. 

One simple model used to provide advice for the management of data-poor 

species is a surplus production model. A surplus production model requires a time series 

of two out of the three: catch, effort and catch rate. The simplest form of a production 

model is the Schaefer model (1957). This model is based on the logistic population 

growth function, and when integrated, returns the symmetric surplus production model. 

 

 
𝑑𝐵

𝑑𝑡
= 𝑟𝐵 (1 −

𝐵

𝑘
) − 𝐶 (1) 

 

Here r is the intrinsic rate of population increase, B is the biomass of the stock, k is the 

carrying capacity of the population and C is the catch (as a rate), where 

 

 𝐶 = 𝑞𝐸𝐵  (2)  

 

Here, q is the catchability coefficient (the fraction of fish caught per one unit of effort) 

and E is the fishing effort. The difference equation for the logistic Schaefer model is 

similar to the differential equation and is usually discretized into annual time steps: 
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 𝐵𝑡+1 = 𝐵𝑡 + 𝑟𝐵𝑡 (1 −
𝐵𝑡

𝑘
) − 𝐶𝑡 (3) 

 

 𝐶𝑡 = 𝑞𝐸𝑡𝐵𝑡 (4) 

 

The terms in this model are the same as in equation (1) except t represents time, thus 𝐵𝑡, 

𝐶𝑡 and 𝐸𝑡 are the biomass, catch and effort at time, t. These equations can be rearranged 

to solve for catch-per-unit-effort (CPUEt), which results in a linear equation. From the 

linear equation, the maximum sustainable yield (MSY) and fishing effort that gives MSY 

(Emsy) can be obtained. Because the Schaefer model assumes that the population is at 

equilibrium, which is rarely true, the equations can be transformed into a linear format or 

fit using a time series analysis with error terms to adjust for non-equilibrium (see Hilborn 

and Walters 1992).  

 Such production models are still used in assessments for data-poor species. 

However, there is the possibility of inaccurate data input; the catch and effort throughout 

the time series rarely reflect the true values. The reported catch and effort can be 

underestimated compared to the true catch and effort because the reported data may not 

include bycatch mortality, local consumption or illegal fishing. Thus, it is important to 

understand how the production model will respond to inaccurate catch and effort data 

because fishery benchmarks are often based on the parameters estimated by this model 

for data-poor fisheries. The objective for this chapter is to determine how 

underestimation of catch and effort affects the parameter estimates from the surplus 

production model. 



 

9 
 

LITERATURE CITED 

Argos. 2015. Argos user’s manual. Available: http://www.argos-system.org/manual/. Accessed 

2015 February. 

Compagno, L.J.V. 1990. Shark exploitation and conservation. In Elasmobranch as Living 

Resources: Advances in the Biology, Ecology, Systematics and the Status of the Fisheries 

(H.L. Pratt Jr., S.H. Gruber, and T. Taniuchi, eds.). NOAA Technical Report NMFS 90: 

391-414. 

Dulvy, N.K., S.L. Fowler, J.A. Musick, R.D. Cavanagh, P.M. Kyne, L.R. Harrison, J.K. Carlson, 

L.N.D. Davidson, S.V. Fordham, M.P. Francis, et al. 2014. Extinction risk and 

conservation of the world’s sharks and rays. eLife 3: e00590. 

Fisher, R.A. 2009. Regional workshop on cownose ray issues identifying research and extension 

needs (proceedings). VIMS Marine Resource Report 2009-6. VSG-09-06. 

http://web.vims.edu/GreyLit/VIMS/mrr09-06.pdf 

Fisher, R.A. 2010. Life history, trophic ecology & prey handling by cownose ray, Rhinoptera 

bonasus, from Chesapeake Bay. NOAA final report (NA07NMF4570324) Grant No. 

713031. VIMS Marine Resource Report No. 2010-20, VSG-10-25. 

Fogarty, M.J. and S.A. Murawski. 1998. Large-scale disturbation and the structure of marine 

systems: fishery impacts on Georges Bank. Ecological Applications 8(1, suppl): S6-S22. 

Hilborn, R. and C.J. Walters. 1992. Quantitative Fisheries Stock Assessment: Choice, Dynamics 

and Uncertainty. Chapman and Hall, London. 

Hill, R. D. 1994. Theory of geolocation by light levels. In Elephant Seals: Population Ecology, 

Behavior, and Physiology. Le Boeuf, Burney J., and Richard M. Laws (eds). 

Berkeley:  University of California Press, pp. 227-236.  

Hoenig, J.M. and S.H. Gruber. 1990. Life-history patterns in the elasmobranchs: implications for 

fisheries management. In Elasmobranch as Living Resources: Advances in the Biology, 

Ecology, Systematics and the Status of the Fisheries (H.L. Pratt Jr., S.H. Gruber, and T. 

Taniuchi, eds.). NOAA Technical Report NMFS 90: 1-16. 

Lutcavage, M.E., R.W. Brill, G.B. Skomal, B.C. Chase and P.W. Howey. 1999. Results of pop-

up satellite tagging of spawning size class fish in the Gulf of Maine: do North Atlantic 

bluefin tuna spawn in the mid-Atlantic? Canadian Journal of Fisheries and Aquatic 

Sciences 56: 173-177. 

http://www.argos-system.org/manual/
http://web.vims.edu/GreyLit/VIMS/mrr09-06.pdf


 

10 
 

Merriner, J.V. and J.W. Smith. 1979. A report to the oyster industry of Virginia on the biology 

and management of the Cownose Ray (Rhinoptera bonasus, Mitchill) in lower 

Chesapeake Bay. Virginia Institute of Marine Science, Special Report in Applied Marine 

Science and Ocean Engineering 216, Gloucester Point. 

Musyl, M.K., M.L. Domeier, N. Nasby-Lucas, R.W. Brill, L.M. McNaughton, J.Y. Swimmer, 

M.S. Lutcavage, S.G. Wilson, B. Galuardi and J.B. Liddle. 2011. Performance of pop-up 

satellite archival tags. Marine Ecology Progress Series 433: 1-28. 

Myers, R.A., J.K. Baum, T.D. Shepherd, S.P. Powers and C.H. Peterson. 2007. Cascading effects 

of the loss of apex predatory sharks from a coastal ocean. Science 315: 1846-1850. 

Pennino, M.G., F. Munoz, D. Conesa, A. Lopez-Quilez, and J. M. Bellido. 2013. Modeling 

sensitive elasmobranch habitats. Journal of Sea Research 83: 209-218. 

Peterson, C.H., F.J. Fodrie, H.C. Summerson and S.P. Powers. 2001. Site-specific and density-

dependent extinction of prey by schooling rays: generation of a population sink in top-

quality habitat for bay scallops. Oecologia 129: 349-356. 

Schaefer, M.B. 1957. Some considerations of population dynamics and economics in relation to 

the management of the commercial marine fisheries. Journal of Fisheries Research 

Board of Canada 14: 669-681. 

Smith, J.W. and J.V. Merriner. 1985. Food habits and feeding behavior of the Cownose Ray, 

Rhinoptera bonasus, in lower Chesapeake Bay. Estuaries 8: 305-310. 

Stevens, J.D., R. Bonfil, N.K. Dulvy and P.A. Walker. 2000. The effects of fishing on sharks, 

rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES 

Journal of Marine Science, 57: 476-494. 



 

11 
 

CHAPTER 2  

SUMMER AND FALL MOVEMENT OF COWNOSE RAY, RHINOPTERA BONASUS 

(MITCHILL 1815), ALONG THE EAST COAST OF THE USA OBSERVED WITH 

POP-UP SATELLITE TAGS 
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ABSTRACT 

The cownose ray, Rhinoptera bonasus, is a common elasmobranch species along 

the southeast United States coast that has received negative attention in recent years. 

These rays are voracious predators on commercial shellfish beds raising concerns 

regarding their control and need for effective management.  Although several life history 

characteristics have been documented for this species, we know little regarding its 

population abundance and migration patterns. I addressed the latter by reviewing 16 

tagged cownose rays in Chesapeake Bay with pop-up satellite archival tags (PSATs) to 

study their movement patterns during the summer and fall and identify wintering 

grounds. Six tags (3 on males and 3 on females) were released at a predetermined time 

and provided archived data on temperature, pressure (depth) and light level. The 

migration tracks were deciphered through geolocation based on light levels, sea surface 

temperatures and depth constraints. PSAT end locations indicate the possibility of 

southern wintering grounds in the coastal waters of central Florida. Female cownose rays 

were found to migrate out of Chesapeake Bay at the end of September to October and 

continue their southerly migration to Florida. The predicted movement tracks from male 

rays indicated that the males exit the bay in July and migrate northward. The male rays 

appear to have a second summer feeding ground off the coast of southern New England. 

In the fall, males migrate south from New England to the same wintering grounds as the 

females in central Florida. No diel differences in habitat use were detected; however, 

male rays occupied a wider depth and temperature range compared to the females. 

Information on the movement patterns and habitat use for male and female cownose rays 

will assist in determining a more effective management plan for this species. 
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INTRODUCTION 

Cownose rays (Rhinotpera bonasus) are a native, seasonal inhabitant in 

Chesapeake Bay. This highly migratory, coastal species is abundant in the bay during the 

summer months and uses the ecosystem for mating and nursery grounds. Cownose rays 

feed on a wide range of benthic organisms including molluscs, crustaceans, benthic 

polychaetes, but primarily bivalves (Smith and Merriner 1985, Collins et al. 2007, Fisher 

2010). These rays are durophagous feeders. In the past, top prey items for this species in 

Chesapeake Bay were soft-shell clams (Mya arenaria) and Baltic macomas (Macoma 

balthica), whereas hard-shelled bivalves were not as common in their natural diets 

(Merriner and Smith 1979; Smith and Merriner 1985; Fisher 2010). Cownose rays prefer 

softer-shelled bivalves (Fisher et al. 2011), such as bay scallops (Argopecten irradians) 

and soft-shelled clams. However, the rays appear to be opportunistic feeders and tend to 

target areas with higher prey density (Smith and Merriner 1985; Collins et al. 2007; 

Fisher et al. 2011).  

Since the decline of wild shellfish populations in Chesapeake Bay, there has been 

an increase in aquaculture and habitat restoration efforts for eastern oysters (Crassostrea 

virginica; Luckenbach et al. 2005; Murray and Hudson 2015) and hard-shell clams 

(Mercenaria mercenaria; Murray and Hudson 2015). However, for the past four decades, 

there have been increasing concerns and accusations regarding predation by cownose 

rays on the declining commercial shellfish populations in Chesapeake Bay (Merriner and 

Smith 1979; Smith and Merriner 1985; Fisher 2009). Peterson et al. (2001) blamed the
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ray for the decline of bay scallop (Argopecten irradians) populations in North Carolina, 

proclaiming that schools of rays can exploit and effectively reduce dense areas of 

scallops. Claims have been made that the cownose ray population in Chesapeake Bay has 

increased dramatically and consequently is putting significant pressure on shellfish 

aquaculture and habitat restoration in the bay (Merriner and Smith 1979).  

Only one study has attempted to estimate the cownose ray abundance in 

Chesapeake Bay. The aerial surveys from Blaylock (1993) indicated a wide variation in 

the average abundance of cownose rays throughout the summer. The counts ranged from 

no rays to a high monthly average estimated at 9.3 million in September from 1986-1989. 

This high variation likely reflects measurement error because of the patchy distribution of 

the rays. Unfortunately, because there is a lack of historical or present data to compare to 

Blaylock’s abundance estimates of cownose rays in Chesapeake Bay, the estimated stock 

size of this population and trends in its abundance are unknown. In 2007, despite the lack 

of abundance surveys and to ameliorate potential pressure of predation on shellfish, a 

fishery for cownose rays was launched and subsidized by the Virginia Marine Resources 

Commission. Because this fishery is unregulated and unmanaged and because rays have 

life history characteristics that make them susceptible to fishing pressures, these factors 

may lead to a “boom and bust” situation as has been observed in similar fisheries (e.g, 

orange roughy, Hoplostethus atlanticus, fishery; Clark 2001). 

The life history characteristics of the cownose ray follows the “K-selected” traits 

similar to other elasmobranchs (Hoenig and Gruber 1990; Musick 1999), which makes it 

vulnerable to overexploitation. These “K-selected” characteristics include late maturity, 

low fecundity, slower growth, larger maximum size and higher maximum age. Studies 



 

15 
 

have shown that cownose rays do not become fully mature until reaching ~70% of their 

maximum size, which equates to around seven to eight years for females (85-88 cm disc 

width) and six to seven years for males (>85 cm disc width) (Smith and Merriner 1987; 

Fisher et al. 2013). Females generally have one offspring per year, pupping in late June 

or July after an 11-12 month gestation period (Smith and Merriner 1986; Fisher et al. 

2013). However, there have been a few documented cases of twins (Fisher et al. 2014). 

Immediately following parturition, mating occurs and females become gravid. The oldest 

individual female observed was estimated to be age 21 years and the oldest estimated age 

for males was 18 years (Fisher et al. 2013). These life history characteristics generally 

indicate a slow growing population.  

Partial migration patterns of cownose rays in Chesapeake Bay have been 

identified in several studies. Both males and gravid females are observed off the coast of 

North Carolina in mid-spring (April) and enter Chesapeake Bay in the beginning of May 

(Smith and Merriner 1987; Blaylock 1993; Fisher 2010). This species is abundant 

throughout the summer in the bay with high variation in school size. The rays exit the bay 

in October (Merriner and Smith 1979; Blaylock 1993; Fisher 2010) for the start of their 

fall migration to their wintering grounds. This is also consistent with their seasonal 

patterns in North Carolina waters (Goodman et al. 2011). However, only the females and 

pups occupy the shallow estuarine waters of Chesapeake Bay from late July through 

October (Merriner and Smith 1979; Fisher 2010). Grusha (2005) suggested that the 

wintering nursery habitat for female cownose rays is off the coast of Florida. However, 

the male residency time inside Chesapeake Bay, subsequent movements in the summer, 

and the fall migration track are poorly known.  
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Habitat utilization and migration routes for both sexes of rays are important 

features to understand in order to provide appropriate management advice for cownose 

rays in the Chesapeake Bay. If cownose ray abundance in Chesapeake Bay were to 

decline dramatically from overexploitation, it may take years for the population to 

rebound. Thus, if a fishery is to continue, it may be more favorable to target males 

sustainably (i.e., allowing an adequate number of adult males for reproduction) so the 

population would be less prone to overexploitation.  

The goals of this study are: 1) to verify the wintering grounds for rays that 

summer in Chesapeake Bay with results from Grusha (2005), and 2) to determine the 

timing and migration route for both male and female cownose rays that summer in 

Chesapeake Bay. The rays were tagged with pop-up satellite archival tags (PSATs), and 

the data on temperature, depth and light levels for geolocation information were analyzed 

to address these goals. The tagged rays used in this work were a part of an overall 

cownose ray tagging program at Virginia Institute of Marine Science (R. Fisher).  
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METHODS 

Tagging and Deployment 

 A total of 16 mature cownose rays were captured, tagged and released in the 

Chesapeake Bay during the summers of 2011 and 2013. The rays were caught by local 

fishermen by haul seines in the Back River Inlet, which is a part of the Poquoson River in 

Virginia and transported to a large holding tank (4.3m x 6.4m x depth 0.71m) at the 

Virginia Institute of Marine Science (VIMS). The animals were acclimated for 72 hours 

in the tank with fresh circulating seawater before  being subjected to handling and 

tagging under established Institutional Animal Care and Use Committee (IACUC) 

protocols (IACUC-2012-07-09-8040-rafish). Females rays were targeted in mid-

September 2011 (n=5), and in 2013, male cownose rays were targeted mid-June through 

early July (n=11).  

 Only healthy rays were selected to be tagged with mini PSATs (MiniPAT, 

Wildlife Computers, Redmond, WA). The tagged female ranged from 95.0 cm to 100 cm 

in disc width (DW) and males ranged from 89.0 to 94.5 cm DW. Each ray selected for 

tagging was first anesthetized with tricaine methanesulfonate (MS-222), and then 

transferred to the tagging station. The PSAT was attached to each animal by suturing a 

loop of 200 lb. nylon fishing line through and around the base of the muscular part of the 

tail just forward of the small second dorsal fin (as described in Le Port et al. 2008). This 

method provided a central placement of the tag and minimized drag and has been 

performed successfully on a variety of batiod species (e.g., short-tailed stingray, Le Port
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et al. 2008).  After the tagging procedure, the ray was placed in a recovery pool and then 

returned to the large holding tank. Tagged rays were held in the holding tank for 24 hours 

to ensure the tagging process was successful and the health of the ray appeared normal 

before individuals were released into the York River off the VIMS beach (37.247°N, 

76.505°W). 

Most of the satellite tags were programmed to be released from the ray after the 

end of the fall migration in mid-December. For example, the tags deployed on the female 

rays were programmed to be released after 90 days in 2011 and the tags on males were 

set to detach between 100 to 150 days. If a PSAT was released early in Chesapeake Bay, 

attempts to recover the tag were made. The satellite tags were programmed to be released 

prematurely if the animal stayed at a constant depth (constant pressure) ± 2.5 m for 72 

hours or went below 4000 m depth for 2011 tags and 1700 m depth for 2013 tags. The 

sensors were set to record every 3 or 5 seconds. The compressed, transmitted information 

to the satellites was stored as a 24 hour summary period with 12 temperature and depth 

bins, along with one set of dawn-dusk light curves when available. If the tag was 

recovered, the complete archive was accessible. 

 

Tag Analysis 

 In this study, I used a variety of methods and programs to solve for the 

geolocations and the best estimated migration track, which is referred to as the most 

probable track. Geolocations are calculated based on light levels estimated from dawn 

and dusk of the local area, which then can be used to delimit latitude and longitude. 

Latitude is estimated from the time of the local dawn and dusk and can have many 
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sources of error (Hill 1994; Musyl et al. 2001). Latitudes during the solstices and at high 

latitudes can be estimated with much better accuracy compared to during the equinoxes 

and at lower latitudes. Longitude can be estimated more accurately than latitude because 

it is determined by the local noon and is not influenced by the latitude and time-of-year 

(Hill 1994; Musyl et al. 2001). The tag pop-up location (end location) is generally known 

with much more precision from the passing Argos satellites established by the first 

transmission with an Argos location class of 3, 2 or 1 (Argos 2015). The tag also 

transmits its compressed, archived information to the passing satellites. I downloaded and 

decoded the archived information on light-level, temperature and depth as well as the end 

location in the manufacturer’s software program (WC- DAP 3.0, Wildlife Computers, 

Redmond, WA).  

 I calculated the geolocations and migration tracks for tags deployed for over 45 

days, which included three females and three males (Table 1). The time interval ensured 

that a long distance could have been traveled. Wildlife Computers’ global estimation 

program (WC-GPE2) was used to obtain estimated geolocations with and without 

matching sea surface temperatures (SST). I used the state-space Kalman filter (Harvey 

1990), which is a linear quadratic estimation model used to describe the transition from 

one state to the next for the geolocation estimation. This statistical model uses recursive 

functions and is based on a biased random walk to determine the most probable track 

given in coordinate pairs (Sibert et al. 2003). I used this model, as described by Sibert et 

al. (2003), in the KFTRACK package, which is an add-on package for the statistical 

environment R (R Core Team 2012). I also used an improved version of the model, 

unscented Kalman filter with sea surface temperatures (UKFSST), described by Lam et 
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al. (2008). This updated model can handle non-linearities and uses sea surface 

temperature to estimate the most probable track. A third program was used, TRACKIT 

without SST (Nielsen and Sibert 2007) and with SST (Lam et al. 2010) through R (R 

Core Team 2012), that also is based on a state-space model with the unscented Kalman 

filter. This program estimates the most probable track from the raw measurements of 

light levels. In addition, TRACKIT does not limit the movement of the tag based on 

dawn and dusk nor assume thresholds for the light-levels. The last program I used to 

analyze the geolocations is WC-GPE version 3 (WC-GPE3). The WC-GPE3 model uses 

a gridded hidden Markov model using the forward-backward algorithm (H. Baer, 

personal communication). The model computes the posterior probability distributions to 

estimate the most likely state at a given time using the light-levels to calculate observed 

locations with error (Pedersen et al. 2011). This model can also exclude locations by 

setting their probabilities to zero (e.g., land for aquatic animals) to better estimate the 

most probable track. A secondary bathymetric correction based on maximum depths was 

used on all converged tracks from the different models to verify or reject the estimated 

geolocations (Hoolihan 2005; Teo et al. 2007; Galuardi et al. 2010). 

 In addition to using state-space modeling to delineate the most probable track for 

cownose rays in Chesapeake Bay, I also examined longitudes alone. I used the estimated 

longitudes throughout the tag deployment from each program (UKFSST, TRACKIT and 

WC-GPE3) and compared them to the longitudes along the east coast of the United States 

(coastline longitudes). Thus, if the rays were assumed to follow the east coast of the 

Unites States as they traveled to their wintering grounds, the longitudes of the coastline 

should match the longitudinal tracks from the programs.  
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 Environmental preferences and daily movement patterns were inferred from the 

temperature and depth measurements for rays at liberty for more than 45 days. To assess 

any possible diel differences in habitat utilization and behavior through the depth and 

temperature records, two diel periods, day and night, were generated. The day captured a 

six hour period from 0800 to 1600 hours and the six hour period from 2100 to 0500 was 

designated as night.  

 To assess potential differences in mean depth and temperature between the two 

diel periods, night and day, and the sex of the ray, a general linear mixed effects model 

with repeated measures was used. The repeated measures analysis was used to account 

for the correlation of the replicates in the dataset due to the multiple observations for each 

individual ray. The linear mixed effects model is as follows: 

 

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛿𝑖 + 𝜏 + 𝜔𝑗 + 𝜌𝑘 + 𝜀𝑖𝑗𝑘 

 

Here, the mean depth and temperature, 𝑌𝑖𝑗𝑘, were a function of the overall mean depth 

(logged) or temperature for each time period, i, for sex, j, and for the individual ray, k, the 

time period, 𝛿𝑖, where i= day or night, Julian date, 𝜏, the sex of the ray, 𝜔𝑗, where j= 

female or male, the effect of the kth individual ray, 𝜌𝑘, and the random error, 𝜀𝑖𝑗𝑘. All 

factors except the effect of the individual ray and error term were treated as fixed effects. 

Each factor was added to the model to determine the amount of influence it has on the 

mean temperature and depth. The depth data were log transformed (loge) to meet the 

assumptions of the model. The error terms for the mean depth (after the transformation) 

and mean temperature were normally distributed (𝜀𝑖𝑗𝑘~𝑁(0, 𝜎𝜀
2). There were no 

interactions found between any of the variables. Because the time period (night and day) 
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both occur in each day, the time period was nested in the Julian date. The repeated 

measures were addressed by specifying a covariance structure that allowed for correlation 

among the error terms. Akaike’s information criterion (AIC, Akaike 1973) was used to 

select the most appropriate covariance structure (autoregressive 1, compound symmetry, 

unstructured, Toeplitz and variance components). 
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RESULTS 

Deployment Duration and Data Retrieval 

 From the 16 PSATs deployed, 6 tags were successfully detached on the scheduled 

date (3 females and 3 males), ranging from 89 to 147 days at liberty (Table 1). One of 

these successful tags did not transmit any messages after the scheduled release, but was 

found a year later by a beachcomber. Only one tag was never heard from after the ray 

was tagged and released. The remaining nine PSATs were released early inside 

Chesapeake Bay after 5 to 32 days at liberty (Table 1).   

 

Horizontal Movement Patterns 

 Based on the successful PSATs, the three female cownose rays migrated to the 

coast of central Florida, between Palm Bay, FL and Daytona, FL, around mid-December. 

Two tags that detached successfully from male rays in late November and early 

December were also found on the coast of central Florida. The third satellite tag attached 

to a male ray was deployed for a shorter time period, ending midway through the fall 

migration near the Virginia and North Carolina border.  

 The end locations of tags that successfully detached when programmed were 

known accurately to within 1.5 km (Argos 2015). In contrast, the migration tracks based 

on the geolocations from light-levels had large errors. With the secondary bathymetry 

correction, most of the estimated latitude and longitude coordinate pairs from the state-

space Kalman filter models with and without sea surface temperature (programs:
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KFTRACK, UKFSST and TRACKIT) were invalid. The WC-GPE3 program, which is 

based on the forward-backward algorithm, provided plausible most probable tracks.  

 Female ray number 1 (Ray 1) appeared to have exited Chesapeake Bay 

immediately after her release. Based on the WC-GPE3 track, she migrated to Cape 

Hatteras, North Carolina, in early October and stayed between the North Carolina and 

Virginia coast until early November. She then continued her southerly, fall migration 

following the coastline of southeastern USA (Figure 1a). The tag was released near 

Satellite Beach, FL (28.08°N -80.561°W) on December 13, 2011. 

 The estimated most probable track for the second female (Ray 2) was not as 

detailed or as plausible as the track from Ray 1. However, the WC-GPE3 program did 

return highly probable areas visited that were similar to the track from Ray 1. Ray 2 

appeared to have stayed inside Chesapeake Bay until early October and possibly migrated 

south past the Cape Hatteras area in mid-October. In late October and November, this ray 

was likely off the coasts of South Carolina, Georgia, and the northern part of Florida 

(Figure 1b). The tag was released on schedule on December 13, 2011 near the end 

location of the first tag (on Ray 1) off Satellite Beach, FL (28.13°N -80.579°W).  

 The third female ray (Ray 3) also most likely stayed inside and around the mouth 

of Chesapeake Bay until early October before she began her southerly migration. Similar 

to Ray 1, Ray 3 migrated past Cape Hatteras around mid-October. However, as Ray 3 

approached the North and South Carolina border area, she traveled northward again and 

possibly off the continental shelf (Figure 1c). In early December, it appears that this ray 

continued her migration along the coast to central Florida, where the tag was released on 

schedule north of Cape Canaveral by Mosquito Lagoon, FL (28.83°N -80.761°W). 
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 Ray 9 was a male cownose ray tagged in early July 2013. Based on the WC-GPE3 

track, this ray migrated out of the Chesapeake Bay soon after being released. In late July, 

he started a northerly migration following the general coastline (Figure 1d). By early 

August the ray was off the New Jersey coast and appeared to have stayed off the coast of 

Long Island, New York and Rhode Island through September. Ray 9 never appeared to 

travel farther north past Cape Cod or George’s Bank (Figure 1d). In October, this male 

ray remained off the New Jersey coastal area generally staying within the continental 

shelf. At the end of October, the ray was around the Cape Hatteras region and continued 

the southerly migration similar to the tagged female rays. By mid-November, he appeared 

to be around the South Carolina coast and in early December around the coast of central 

Florida. The tag from this male was released on schedule (December 2, 2013), but never 

reached the surface to transmit any messages. The tag was found by a beachcomber a 

year later on the beach at Blowing Rock Conservatory on Jupiter Island, Florida. Thus, an 

assumption was made that the end location was near Jupiter Island (27.03°N -80.095°W).  

 The tag on the other male ray with a other full migration track (Ray 16) was only 

able to transmit 18 messages over a 9 hour period before all transmissions stopped. Based 

on the limited messages received by the Argos satellites, this ray, tagged in early July, 

appeared to have two highly probable locations (Figure 1e). One location was along the 

coast of North Carolina just south of Cape Hatteras in October. The other area was along 

the coast by the South Carolina and Georgia border in November. The tag end location 

was November 30, 2013 by Melbourne Beach, FL (28.15°N -80.584°W).  

 Ray 12, a male ray tagged on June 13, 2013, had a partial migration track ending 

in October 11, 2013. This ray migrated out of the bay soon after he was tagged; however 



 

26 
 

Ray 12 traveled south below Cape Hatteras in June and early July. By mid-July, it 

appeared that the ray changed to a northward course along the coast. In August, Ray 12 

was most likely off the coast of Long Island, New York, and Rhode Island, similar to Ray 

9. Ray 12 appeared to travel farther north by the Cape Cod coast and possibly to the 

George’s Bank area (Figure 1d) for a few weeks in September. This ray then made the 

migration back south, where the end location was off the coast of the Virginia and North 

Carolina border (36.45°N -75.723°W).   

  Although the coordinate pairs for the other programs (i.e., TRACKIT and 

UKFSST) did not yield plausible geolocations for tagging location data, the estimated 

longitude is known to be more accurate than latitude (Hill 1994; Musyl et al. 2001). For 

the female rays, the coastline longitudinal track began in Chesapeake Bay and continued 

south to central Florida. The coastline longitudinal track for male rays started in the bay, 

demarcated the east coast longitudes in a northward direction to Rhode Island and then 

traced back down the coastline to central Florida. Based on the longitudes predicted by 

each of the programs that produced a converged track, female rays, Ray 1 and 3, 

appeared to have followed the east United States coastline pattern for their fall migration 

down to the coastal waters of central Florida (Figure 2a,b). The longitude tracks for male 

rays, Rays 9 and 12, also followed the general pattern of the longitude of the east coast of 

the United States (Figure 2c,d). Two rays, female Ray 2 and male Ray 16, were excluded 

from the longitudinal analysis because not enough geolocations were predicted to 

complete a full track. Generally, the longitudes predicted by WC-GPE3 more closely 

followed the coastline longitudes than the longitudinal tracks from TRACKIT or 

UKFSST.  
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Vertical Movement and Habitat Preferences 

 Temperature and depth records were examined from tags that were deployed for 

greater than 45 days. In general, male rays occupied a wider range of depths (0-51 m) 

compared to females (0-26 m) (Figures 3, 4, 5). According to the geolocation data, male 

rays occupied areas that had deeper depths available, especially in August, September 

and October. In September and October, the depth ranges for Ray 9 were from the 

surface waters to 50.9 m and 50.3 m, respectively. This male ray also showed frequent 

dives throughout the summer and fall. When Ray 9 was in Chesapeake Bay, he generally 

stayed closer to the surface, but made repeated dives. This ray also made frequent dives 

(5-8 dives per hour) often returning to the surface between each descent when he was in 

the north where the water was deeper. In contrast, this male ray stayed closer to the 

substrate and did not return to the surface as often when on the wintering grounds. Rays 

12 and 16 demonstrated similar diving patterns, but dove less frequently compared to Ray 

9. The male rays spent 50% of their time during both the day and night at the surface and 

~ 85% of the time in depths between 0 and 15 m (Figure 5a). The males tended to prefer 

shallower waters (0-10m) from June through September and slightly deeper water in 

November and December (Figure 3c).  

 Female rays, similar to the males, occupied shallower depths during September 

and October, but were found at deeper depths (10-25 m) a higher percentage of the time 

during November and December (Figure 3d). The average depths (± 1 sd) in November 

and December (11.4 ± 4.8 and 11.5 ± 3.9 m, respectively) were deeper than the average 

overall depth (10.2 ± 10.4). However, compared to males, the female cownose rays 

tended to spend more time throughout the entire water column (Figure 5b). In particular, 
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Ray 1 spent a greater proportion of time at deeper depths compared to the other females 

and males. In December, Ray 3 always stayed within a 15-30 m depth range. Female rays 

do not appear to stay at constant depths for long periods of time when migrating or when 

occupying their summer or winter nursery habitats. There was no diel difference in the 

distribution of depth for the rays in this study according to the mixed effects model (F1, 

27=0.68, p= 0.416); however, sex of the ray was significant (F1,33.2=9.76, p= 0.004). The 

estimated parameters for sex and time period in the depth model were as follows: 

Females= 1.41±0.13, Males=1.89± 0.07, Day= 1.70±0.09, Night=1.60±0.09.  The 

autoregressive 1 (AR(1)) covariance structure was best for both depth and temperature 

models. 

 Similar to the depth model, there were no diel differences in water temperature 

distribution for the rays in this study (F1, 22.8= 0.45, p=0.511), but the sex factor was 

significant (F1,23.4=10.61, p= 0.003). The estimated parameters were as follows: Females= 

23.27±0.35, Males=21.76± 0.23, Day= 22.4±0.26, Night=22.6±0.25.  Male cownose rays 

occupied a wider temperature range (mean: 22.75 ± 2.34 °C) compared to the females in 

this study (mean: 22.6 ± 1.65 °C). This is directly related to the deeper depths to which 

the male rays were able to dive. From June to September, the temperature averages 

decreased, but the range was still large (Figure 3a). The minimum and maximum 

temperatures recorded were from male rays: Ray 9 at 11.6 °C in September, and Ray 12 

at 30.1°C in July. In November and December, the male cownose rays stayed in slightly 

warmer water, which corresponded to the shallower depth profiles (Figure 3c). The 

female cownose rays in this study stayed in warmer water from September through 

November, but preferred colder water in December compared to the males (Figure 3). 
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Overall, the temperature range for the females (18.6- 27.2 °C) was narrower than males 

(11.6- 30.1°C), particularly in September and October. In both the day and night time 

periods, the males spend about 40-45% of their time at 21-23 °C, whereas the females 

spend about 35-40% of their time at that temperature range (Figure 6). The average 

temperature was 21.8°C and the majority of the recorded temperatures were from 20 to 

24°C for all rays. 
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DISCUSSION 

 Based on the PSAT data, I can confirm the location of the wintering grounds for 

cownose rays from Chesapeake Bay. Both sexes appear to aggregate around the coastal 

areas of central Florida between Daytona Beach and West Palm Beach, Florida. Three of 

the tags (from 2 females and 1 male) were released within an 8.5 km area of one another 

according to the Argos satellites. Grusha (2005) also identified central Florida as the 

wintering grounds for female cownose rays from Chesapeake Bay. This information 

reveals part of the migration pattern and overwintering grounds along the east coast of 

Florida as an important ecosystem for cownose rays.  

 Although cownose rays are known to swim at the surface, the rays are strongly 

associated with the benthic substrate for feeding. Female and male rays may not likely 

migrate off the continental shelf for extended periods of time based on their depth 

profiles. The general track gave reasonable large-scale movement patterns, despite the 

model estimating a few geolocations past the continental shelf. All in all, the underlying 

track produced by WC-GPE3 indicates that the females migrate from the Chesapeake 

Bay along the coastline to their wintering grounds in central Florida during the fall. 

Results from the male tracks suggest that the cownose rays that inhabit the Chesapeake 

Bay in early summer have a longer migration than anticipated. The tracks from Rays 9 

and 12 suggest a second summer feeding area for males off the coast of southern New 

England. 
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 The adult females continue to utilize the productive Chesapeake Bay estuary, but 

the males leave after mating. The question remains as to why the males choose to leave 

and expend more energy for the long migration northward. I hypothesize that the male 

cownose rays migrate out of the bay to reduce competition for the food and habitat 

resources for the females and pups. Fisher (2010) suggests sex-specific differences in 

cownose ray foraging tactics in the Chesapeake Bay during mixed sex schooling prior to 

mating. Females were observed to target a larger array and more nutrient rich prey than 

males. Chesapeake Bay has nutrient rich and easily accessible prey and offers protection 

from most large predators (i.e., sharks). Thus, it is more advantageous for the overall 

population to allow females and young to stay inside the nursery grounds within 

Chesapeake Bay where it is safer and to reduce the competition for the ideal feeding 

habitat. Although males are subjected to more extensive migratory movement than 

females, post-mating habitats off New Jersey through southern New England is 

productive and supports a large and diverse community of marine life (Georges Bank; 

Garrison and Link 2000). 

 The high seasonal occurrences of rays in the coastal waters of North Carolina 

align with the timing when tagged rays in this study were migrating along the coast of 

North Carolina. Goodman et al. (2011) found higher abundances of cownose rays in the 

spring time and late autumn in the coastal waters during known migration periods 

compared to the lower group sizes inside the North Carolina estuaries in the summer. The 

differences in abundance during the different seasons may suggest that the spring and fall 

migrations include cownose rays from the entire Atlantic population. Grusha (2005) and 

this study also suggest that the Atlantic populations of cownose rays (R. bonasus) do not 
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migrate around the southern part of Florida to the Gulf of Mexico. This finding supports 

the premise that the cownose rays in the Atlantic area are a separate stock from the R. 

bonasus in the Gulf of Mexico. Recent genetic work determined the presence of at least 

two distinct stocks of R. bonasus in Chesapeake Bay and Gulf of Mexico (McDowell and 

Fisher 2013). Likewise, cownose rays in the Gulf of Mexico are found to mature at an 

earlier age (age 4-5) (Neer and Thompson 2005) compared to age 6-7 and 7-8 for males 

and females, respectively, in Chesapeake Bay (Smith and Merriner 1987; Fisher et al. 

2013).  Neer and Thompson (2005) also showed that pupping occurs in mid-April 

through possibly November, which is much earlier and longer than in the Chesapeake 

Bay (Fisher 2010). The differences in the pupping season are likely a result of the warmer 

waters in the Gulf of Mexico compared to the Atlantic. However, maturity and pupping 

season could potentially be confounded because there are two species of cownose rays, R. 

bonasus and R. brasiliensis, in the Gulf of Mexico that are difficult to distinguish from 

one another (J. McDowell, pers. comm.).  

 The behavior of the cownose rays showed no differences with depth and 

temperature preferences during the two diel periods. However, there were differences 

between sexes in their profiles for mean temperature and depth throughout the seasons. 

Male rays occupied a broader depth range compared to females, but this was influenced 

by their longer migration and feeding habitat. The northern second feeding habitat for 

males is deeper (up to 100 m), whereas the depth in the Chesapeake Bay ranges from 0 to 

53 m with an average of 6.5 m. Although this batiod species is associated with benthic 

feeding, they are considered epipelagic (e.g., Rogers et al. 1990; Blaylock 1993). My 

results support their epipelagic habit; the rays spend most of their time at the surface. The 



 

33 
 

male rays in this study spent half of their time at the surface (0-5 m) and 90% of their 

time at depths from 0-15 m. The females were not as associated with the surface as the 

males spending only about 30% of their time between 0-5 m. Females were found 

throughout 0-20 m from September to December.  

 The cownose rays from Chesapeake Bay were tolerant of a wide range of 

temperatures, particularly the males (recorded range: 11.6- 30.1°C). According to 

Schwartz (1964), the lethal minimum temperature for cownose rays is about 12°C. 

However, a sudden drop in temperature to 3.4°C did not appear to distress two of the 

captive specimens for a short time period (Schwartz 1964). Schwartz’s study and results 

from this study suggest that the rays can tolerate colder waters for a short amount of time, 

for example, for episodic diving and feeding. In addition, tags from this study rarely 

recorded temperatures above 29°C, which supports the finding that cownose rays avoided 

temperatures greater than 30°C (Neer et al. 2007). Temperature and depth had no effect 

on the distribution of cownose rays in the Caloosahatchee River, FL (Collins et al. 2008) 

and along the northwestern part of the Gulf of Mexico (Craig et al. 2010). The rays in 

Craig et al. (2010) were most abundant around highly productive, riverine-influenced 

areas. Perhaps the cownose rays from Chesapeake Bay also seek areas that are highly 

productive with little regard for temperatures within a certain range. In conclusion, the 

rays appear to be fairly tolerant of temperature changes within a range from 18-28°C and 

can handle more extreme temperatures for short periods of time. 

 Unfortunately, one of the tags on a male ray was only able to transmit a few 

messages, which resulted in little and low resolution light-level, temperature and depth 

data. In contrast, one of my failed tags was found a year later yielding high resolution 
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data. Out of 16 PSATs deployed, only 5 were released and transmitted messages on 

schedule (31.25%). The non-reporting rate of the satellite tags in this study was 12.5% (2 

out of 16 tags) and the percent of premature detachment was 56.25% (9 tags). These 

percentages align with those in the literature (Musyl et al. 2011). The reporting rate for 

Wildlife Computer pop-up satellite tags was calculated to be about 86% (all PSATs= 

79%) with only about 18% of the reporting tags remaining attached until the programmed 

release (Musyl et al. 2011).   

 Non-reporting and premature release is a common issue for PSATs. These tag 

failures arise from either issues with the tag or animal. Problems originating from the tag 

may include: battery failure, tag damage (e.g., antenna damage), mechanical failure (e.g., 

tethers) and biofouling of the tag (e.g., Hays et al. 2007, Musyl et al. 2011).  The tag 

could fail to report or be released early due to problems with the location of the tag 

attachment on the animal (i.e., infections or tissue necrosis; Hoolihan et al. 2011), 

entanglement with substrate or other animals, social or mating behaviors (e.g., Swimmer 

et al. 2006), predation from sharks, natural mortality or mortality induced from the 

tagging event (e.g., Musyl et al. 2009). It is difficult to determine the reason behind the 

tag failures.  

 The tag in my study that was found one year later was released on schedule. The 

beachcomber who found the PSAT had to scrape away the biofouling in order to read the 

numbers on the tag. I hypothesized that the PSAT had too much biofouling, which caused 

the tag to sink to the bottom until the battery power expired. One theory for the 18 

message tag was that the PSAT was washed up and buried on shore because of the close 

proximity of the end location to the shoreline. It is reasonable to believe that the tags that 
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were all released prematurely in the Chesapeake Bay were due to the social behavior of 

the rays (mating behavior), mortality induced from tagging or entanglement with the 

substrate. Yet, the tag success rate was similar to other studies. 

 From the pop-up satellite tags, I have provided greater insight on the movement 

patterns and habitat use of adult male and female rays from the Chesapeake Bay. The 

rays appear to be adaptable to changes in temperatures and utilize a wide range of 

habitats including estuaries with low salinity and coastal waters of depths up to 50 m. 

There are still many unanswered questions that need to be resolved for the appropriate 

management of the cownose rays on the Atlantic coast of the United States. For example, 

do male cownose rays that mate in bays other than Chesapeake Bay mix with Chesapeake 

rays off Long Island and Rhode Island? If the cownose rays continue to draw the 

attention of commercial shellfish farmers, we would need to consider the implications of 

a fishery on this elasmobranch species.    
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Table 1. Summary of the cownose rays (Rhinoptera bonasus) in Chesapeake Bay that 

were tagged with pop-up satellite tags in 2011 and 2013. Boldface type indicates tags 

that were used for geolocation analysis. All rays were released at 37.247 °N latitude, 

76.505 °W longitude. **estimated latitude and longitude because the tag was found by a 

beachcomber at Blowing Rock Conservatory, Jupiter, FL. 

 

Ray ID 
Sex  

(DW in cm) 
Release  

Date 
Report  
Date 

Report  
Latitude (°N) 

Report 
Longitude  (°W) 

Days at  
Liberty 

1 F (97.0) 9/15/2011 12/13/2011 28.08 -80.561 89 

2 F (96.0) 9/15/2011 12/13/2011 28.13 -80.579 89 

3 F (100.0) 9/16/2011 12/15/2011 28.83 -80.761 90 

4 F (98.0) 9/15/2011 9/19/2011 NA NA 5 

5 F (95.0) 9/15/2011 9/19/2011 NA NA 5 

6 M (92.5) 6/13/2013 6/25/2013 31.5 -78.661 13 

7 M (90.5) 6/14/2013 7/15/2013 37.5 -74.578 32 

8 M (90.0) 6/14/2013 6/18/2013 34.5 -77.157 5 

9 M (93.0) 7/6/2013 12/2/2013 **27.03 **-80.095 147 

10 M (93.5) 6/13/2013 6/18/2013 NA NA 6 

11 M (91.0) 6/14/2013 7/9/2013 38.29 -76.107 26 

12 M (89.0) 6/13/2013 10/11/2013 36.45 -75.723 119 

13 M (94.5) 7/5/2013 7/11/2013 32.5 -78.515 7 

14 M (90.5) 6/14/2013 NA NA NA NA 

15 M (93.5) 7/6/2013 7/25/2013 37 -76.118 20 

16 M (93.0) 7/6/2013 11/30/2013 28.15 -80.584 145 
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Figure 1. Geolocations and most probable tracks estimated by WC-GPE3 for the three female (Ray 1, 2 and 3: a, b and c, respectively) 

and three male (Ray 9, 12, 16: d, e, and f, respectively) cownose rays. Colors indicate the month of the estimated geolocation: 

red=June and July, orange=August, yellow=September, green=October, blue=November and purple= December
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Figure 2. Longitude tracks from the WC-GPE3, TRACKIT and UKFSST programs for 

female rays, Ray 1 (a) and Ray 3 (b) and male rays, Ray 9 (c) and Ray 12 (d) overlaid on 

longitudes of the United States eastern seaboard coastline.  
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Figure 3. Plots of the distribution of temperature and depth for each month for male (a & 

c) and female (b & d) cownose rays. Dashed red line indicates the average temperature or 

depth for all rays combined. 
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 Figure 4. Depth-temperature observations for female (a) and male (b) cownose rays 

during night (2100-0500, black dots), and day (0800-1600, grey open circles) time 

periods throughout the entire deployment of PSATs (June-December).  
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Figure 5. The percentage of total time cownose rays spent at each depth (5m bin-size) 

during night (grey) and day (white) time periods for male (a) and female (b) tagged rays 

at liberty for more than 45 days.  
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Figure 6. Percentage total time cownose rays spent at each temperature during night 

(grey) and day (white) time periods for male (a) and female (b) tagged rays at liberty for 

more than 45 days.  
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CHAPTER 3  

EFFECTS OF UNDERESTIMATING CATCH AND EFFORT ON  

SURPLUS PRODUCTION MODELS 
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ABSTRACT 

Stocks are often managed based on surplus production models when only catch 

and effort data are available. However, reported catch and effort rarely equal the true 

values. I studied the effects of underestimated catch and effort on surplus production 

model parameter estimates (e.g., MSY, Bmsy and Fmsy) as well as key ratios of 

parameters. I used ASPIC software to examine different scenarios of underreporting to 

compare to the original dataset for three example fisheries, North Atlantic swordfish, 

northern pike in Minnesota and queen conch in the Turks and Caicos Islands. Our results 

suggest that with constant underestimation of catch and effort throughout the time series 

the biomass parameters (MSY, Bmsy, Bnext, B1, and K) are all underestimated by the 

same percentage, and Fmsy, Flast and the ratios, F/Fmsy and B/Bmsy, are not affected. 

This result is safe in the sense that when one thinks the harvest is MSY with F=Fmsy, 

one is achieving MSY and Fmsy even though the catch is actually larger than it appears. 

However, increasing or decreasing trends in underreporting of catch and effort cause 

errors in the parameter and ratio estimates whose direction is case specific and whose 

magnitude can be high or low. Each fishery model responded differently to the simulated 

scenarios, which may be a result of different exploitation histories or the quality of the fit 

of the production model to the data. If catch and effort are believed to be underestimated, 

I highly recommend conducting simulations of a variety of possible scenarios similar to 

the methods in this study to determine how the surplus production model responds.  
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INTRODUCTION 

Surplus production models, also referred to as biomass dynamic models (Ricker 

1975; Hilborn and Walters 1992), are one of the simplest methods of assessment with the 

only required inputs being a time series of catch and effort. Production models provide 

estimates of biomass throughout the time series, as well as estimates of four fundamental 

parameters: maximum population size (K), intrinsic rate of population growth (r), 

catchability coefficient (q) and population biomass at year 1 (B1). In addition, other 

important parameters, notably maximum sustainable yield (MSY), biomass at which 

MSY is obtained (Bmsy), and fishing mortality which produces MSY (Fmsy), can be 

derived from the four fundamental parameters. These are commonly used to determine 

reference points for harvest regulations. 

More complex models have been developed such as integrated size- or age-

structured models (e.g., Methot and Wetzel 2013). However, the advanced methods 

require additional data which are not available for many stocks. For example, age 

composition is often difficult to obtain in tropical species, invertebrates (Punt et al. 

2013), and highly migratory species (Kopf et al. 2010; Chang and Maunder 2012). Data-

poor stocks, such as those in artisanal fisheries (e.g., Jamaican reef fisheries; Koslow et 

al. 1994), shark fisheries, or caught as bycatch (e.g., hammerhead species, Sphyrna spp.; 

Jiao et al. 2011), also require use of simple assessment methods such as production 

models. Moreover, there is a tradeoff between using recent, short time series with higher
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quality data with less dynamic range versus utilizing a longer time series with less precise 

data, but more contrast (e.g., Georges Bank yellowtail flounder; Jacobson et al. 2002).  

One problem with catch and effort data, particularly from historical records, is 

that the information may not have been accurately recorded. A major issue today in 

fisheries management is illegal, unreported, and unregulated (IUU) fisheries (Lodge et al. 

2007). With high value species, such as eastern Atlantic bluefin tuna, there have been 

problems with misreported catches (Gagern et al. 2013) and fishing locations. This stems 

from concerns over the validity of logbooks (Polacheck 2012). An extreme case of 

unreported catch is the South African abalone (Haliotis midae) fishery; this species is in 

high demand which leads to poaching and illegal export (Hauck and Sweijd1999) of up to 

10 times the total allowable catch in one year (Plagányi et al. 2011). Another issue of 

underestimating catch and effort is bycatch mortality, which has only been considered as 

a source of mortality in the past few decades (Alverson et al. 1994).  Bycatch mortality is 

a particularly a contentious problem for long-lived species with low reproductive rates 

(Hall et al. 2000). This additional mortality should always be included in the fishing 

mortality (Chopin et al. 1996; Hall et al. 2000). An additional source of non-recorded 

catch and effort is artisanal fisheries, which often lack fishery reporting regulations 

(Koslow et al. 1994) or even appropriate data.  

The degree of underestimation of catch and effort may stay constant or may 

change through time. Unreported catch and effort in artisanal fisheries may increase as 

the local population grows. Alternatively, increased monitoring or enforcement efforts 

might result in reduced problems of unreported catch and effort. 
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 With the possibility of inaccurate catch and effort data, it is necessary to 

understand the robustness of the production models because there is an increasing 

demand for stock assessments for data-poor species. The objective of this study was to 

address the reliability and robustness of the surplus production model, as estimated by 

Pella and Tomlinson (1969) and Prager (1994), to estimate parameters such as MSY, 

BMSY and FMSY when catch and effort are underestimated. I used three managed fisheries 

to represent realistic issues regarding underreported data. These species, North Atlantic 

swordfish (Xiphias gladius), northern pike (Esox lucius) and queen conch (Strombus 

gigas), were selected because they have different life histories and have probable 

underestimation of catch and effort. I underestimated data inputs to simulate how the 

underreported catch and effort influence estimated production parameters.  
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CASE STUDY FISHERIES 

Three managed fisheries were selected for this study to represent a range of life 

history characteristics and fishery types (i.e., commercial, mixed commercial-artisanal 

and mixed recreational-artisanal). These fisheries also vary in the length of the time series 

and information content (contrast) in the data providing a spectrum of model fits (good to 

poor). Each of the assessments for these fisheries has used or currently incorporates 

surplus production models.   

The North Atlantic swordfish is a highly migratory, fast-growing fish with 

longevity of 15 years (Arocha et al. 2003; DeMartini et al. 2006). This stock is managed 

by the International Commission for Conservation of Atlantic Tunas (ICCAT) and 

supports a valuable commercial fishery. Pelagic longlines are the primary gear type, and 

this target fishery has been operating since the 1950’s. The tuna longline fishery, which 

catches swordfish opportunistically, started in 1956 (Anon. 2010). A combined, 

standardized catch-per-unit-effort (CPUE) index from 1950 to 2011 from all country 

participants in the swordfish fishery was used in the 2013 stock assessment (Anon. 2013) 

as well as in this study. The North Atlantic swordfish fishery was a prime example of a 

fishery that depended on a multitude of factors that could result in underestimated catch 

and effort, such as underestimating mortality associated with bycatch and underreported 

fishing (e.g., IUU). 

The northern pike is a temperate, boreal freshwater fish with a longevity of 

around 17 years (R. Bruesewitz, Minnesota Department of Natural Resources, pers. 
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comm.). The northern pike fishery in Mille Lacs Lake, Minnesota, was selected because it 

supports a recreational and tribal subsistence fishery. It is jointly regulated by the Great 

Lakes Indian Fish and Wildlife Commission and Minnesota Department of Natural 

Resources. The recreational fishery is based on hook and line with catch and effort 

records starting in 1985. The tribal fishery primarily targets walleye (Sander vitreus) 

using gillnets, with northern pike occurring as a bycatch species. The records for tribal 

catch for northern pike began in 1997 when the tribal right to fish was affirmed by a court 

ruling. Although the tribal catch was initially small compared to the recreational fishery, 

it surpassed the recreational catch from 2003 to 2012. Surplus production models are 

currently used to determine the status of the northern pike population. Years used for this 

time series are 1985 to 2011.  

The queen conch is a highly valued commercial species that is collected by free 

diving (Medley and Ninnes 1999). The queen conch fishery in the Turks and Caicos 

Islands, British West Indies, is an example of a commercial and artisanal fishery. 

Historically, queen conch was a staple food for the local inhabitants with landing data 

recorded from 1904 with minimal export. Throughout the century, the conch fishery went 

through several high and low periods of catch due to commercial and economic demands. 

It is now the second most important fishery in the Turks and Caicos Islands (Appeldoorn 

1996; Ninnes 1994). Because there are only 5-6 processing plants (Medley and Ninnes 

1999) for commercial export for all islands, the landings and effort were recorded for all 

commercial landings. Recorded catch and effort used for this study span from 1974 to 

2011. However, the recorded catch and effort did not account for the local consumption 

from both locals and tourists, and led to an underestimate of the catch and effort. 
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SIMULATION METHODS 

I treated the reported catch and effort as if they were recorded without error (true 

values). I decreased each by fixed percentages throughout the time series to simulate 

realistic scenarios of underestimation and observed how the assessment results changed. 

The scenarios encompassed eight groups (Figure 1): 1) a constant lower percentage of 

catch and effort by 10%, 20%, 30%, 40% and 50% (Constant), 2) an increase in the 

underestimation of catch and effort gradually by 1%, 2%, or 3% each year for the first 15 

years followed by continued underestimation at 15%, 30% or 45%, respectively 

(IncreaseBeginCont), 3) the same increase in underestimation for the first 15 years as in 

(2) followed by no underreporting for all subsequent years (IncreaseBeginStop), 4) no 

underestimation initially followed by a continual increase in underreporting for the last 

15 years as in (2) (IncreaseEnd), 5) a decrease in underestimation gradually by 1%, 2% or 

3% each year starting at 15%, 30% and 45% underestimation at the beginning, 

respectively (DecreaseBegin), 6) same as in (5) but at the end of the time series 

(DecreaseEnd), 7) an exponential increase (1.01
y
, 1.02

y
 or 1.03

y
, where y= year number 

from 1, 2, …15) with continued underestimation after year 15 similar to (2) 

(ExpIncreaseBegin) and 8) the same exponential increase as in (7), but for the last 15 

years (ExpIncreaseEnd). All scenarios were created for each of the three species. 

I used the non-equilibrium logistic model of Pella and Tomlinson (1969) as 

described in Prager (1994) because this model is the best to use when the shape of the 

surplus production curve is unknown, particularly for swordfish-like species (Prager
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2002). I ran each of the scenarios and the base (the original, “true” catch and effort) 

datasets through the ASPICv5 software (A Stock Production Model Incorporating 

Covariates Version 5; Prager 1994) to obtain biomass and parameter estimates. ASPICv5 

uses a lognormal observation error in fishing effort, which is found to provide the least 

biased and most precise parameter estimates (Polacheck et al. 1993, Prager 2002). All 

parameter estimates were bootstrapped 1000 times, the maximum number allowed in 

ASPICv5, using residual bootstrapping (Efron and Tibshirani 1986). I compared each of 

the outputs from the different scenarios to the base by calculating the percentage of 

change for each parameter and ratio estimate. For convenience, I referred to the percent 

change as percent error (% error) because I treated the base case as having the correct 

catch and effort and wanted to determine the error induced by observing false levels of 

catch and effort. Using estimates of MSY as an example: 

 

% 𝑒𝑟𝑟𝑜𝑟 =  
𝑀𝑆�̂�𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑀𝑆�̂�𝑏𝑎𝑠𝑒

𝑀𝑆�̂�𝑏𝑎𝑠𝑒

∗  100 

 

I examined the percent error for MSY, Bmsy, Bnext (the starting biomass for the next 

year), Bnext/Bmsy, Fmsy, Flast (fishing mortality in the last year), and Flast/Fmsy. 
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RESULTS 

Under a constant percentage of underestimation of catch and effort throughout a 

time series, the Bnext/Bmsy and Flast/Fmsy ratios estimated by a surplus production 

model correctly matched the known ratios, whereas the catch and effort underestimation 

was reflected in some, but not all individual parameter estimates (Figure 2). For example, 

if the reported catch and effort were X% lower than the true values, Bnext, Bmsy and 

MSY estimates would also show the same X% error. Because Bnext and Bmsy are both 

underestimated by the same percentage, the ratio Bnext/Bmsy remains unchanged 

because the errors cancel. In contrast, Flast and Fmsy were not affected by the constant 

underestimation of catch and effort, thus the Flast/Fmsy was also unchanged (Figure 2). 

Likewise, when catch and effort are constantly underestimated throughout the time series, 

the estimated biomass is also underestimated by the same percentage (Figure 3 a, d, g). 

These patterns for constant underestimation were consistent for all three species. 

Although scenarios with a constant lower percentage of catch and effort 

demonstrated clear results, the trends in underestimation throughout the time series 

produced different patterns among species (Figures 3, 4, 5). No major differences 

between an increasing underestimation by 1%, 2% and 3% each year (IncreaseBeginCont 

and IncreaseEnd) and the corresponding exponential increase (ExpIncreaseBegin and 

ExpIncreaseEnd, respectively) were discerned. Therefore, results from the exponential 

increase are not shown. 
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The errors in the swordfish production model were generally intuitive for all 

scenarios. For example, the increasing underestimation trend at the beginning of the time 

series (1%, 2%, or 3% increase per year), followed by a constant underestimation (at 

15%, 30% or 45%, respectively, IncreaseBeginCont) resulted in about 15%, 30% or 45% 

error for the parameter estimates MSY, Bnext and Bmsy (Figure 4). Bnext/Bmsy, Flast, 

Fmsy and Flast/Fmsy had close to no error from the base (-0.65 to 0.88 % error). This 

pattern was the same for the constant percentage of underestimation. In addition, the 

decreasing underestimation trend at the beginning of the time series did not appear to 

affect the parameter and ratio estimates for the swordfish production model (Figure 5).  

Both the pike and conch production models did not have intuitively obvious errors 

for the parameter and ratio estimates for increasing and decreasing trends in 

underestimation as in the swordfish model (Figures 4, 5). The trends in the errors were 

case and scenario specific. For example, with an increasing underestimation of catch and 

effort at the beginning of the time series followed by no underestimation for the 

remaining years (IncreaseBeginStop), the swordfish models had no errors for Flast/Fmsy. 

In contrast for the same scenario group, pike models had negative errors and conch 

models had positive errors. However, similar to the swordfish model, a 1% increase or 

decrease in underestimation of catch and effort during the pike time series generally 

corresponded to the smallest errors. Estimated parameters for the increasing trends 

(IncreaseBeginCont, IncreaseBeginStop and IncreaseEnd) for the pike production model 

all fell within 50.65% error (Figure 4).  

The conch dataset produced the majority of the extreme percent errors, 

representing fourteen of the largest twenty errors overall. The largest percent error from a 
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conch production model was 701%. All of the percent errors that were greater than 100% 

were associated with biomass parameter estimates, Bnext and Bmsy. Despite conch 

having the majority of large errors, the pike dataset yielded the two largest errors 

observed.  

In general, decreasing underestimation (improved reporting rates) during the time 

series appeared to generate the greatest range of errors for the swordfish and pike 

production models (Table 1). The ten largest errors were associated with both 2% and 3% 

decrease in underestimation of catch and effort at the beginning or end of the time series 

(Table 1). Estimated parameters in the pike production models associated with biomass, 

e.g. Bmsy and MSY, appeared to yield more extreme errors compared to the fishing 

mortality parameters. In the swordfish production models, decreasing trends in 

underestimation tended to have a greater effect and more variability on the estimated 

fishing mortality parameters, e.g. Flast, compared to the biomass parameters. In general, 

each production model responded differently to underestimation of catch and effort.  
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DISCUSSION 

Constant underestimation of catch and effort throughout the time series was 

manageable because the conclusions remain correct about the harvest rate and the relative 

biomass level. The biomass estimates and MSY are incorrect, but the production models 

return the correct biomass ratio. This is due to catch and effort being both underestimated 

by the same percentage and the errors in Bnext and Bmsy estimates are also lower by that 

same percentage. This results in the ratio Bnext/Bmsy being identical to the original data 

analysis. Thus, a fishery that is estimated as being fished at a certain rate from these data 

is in fact being fished at that level. Consequently, management efforts can be based on 

the fishing mortality parameter estimates or ratios, Bnext/ Bmsy and Flast/Fmsy, from the 

production models if catch and effort are constantly lower by an unknown percentage. 

This scenario of constant underestimation of catch and effort is not common, but in 

situations when this does occur, management can proceed without knowing the level of 

underreporting.  

More common situations are trends in underestimation of catch and effort over 

time. However, these scenarios resulted in a wide range of positive and negative errors in 

the parameter estimates making it difficult to determine how the production model will 

respond to each case. For example, the swordfish production models performed in a 

manner that seemed intuitive, whereas the pike often displayed the opposite signs in the 

errors for the same corresponding scenarios. Small problems in underestimation in the 

swordfish models led to smaller, damped errors in the parameter and ratio estimates for
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IncreaseBeginStop, DecreaseBegin and most of IncreaseBeginCont. Small changes in 

catch and effort in the pike model generally translated into small errors for 

IncreaseBeginCont and IncreaseBeginStop and for the biomass parameter estimates for 

IncreaseEnd. Conch models generally had the greatest range of errors and the least 

distinct patterns in parameter and ratio estimates. The biomass parameter estimates had 

the largest errors for the conch models. Small problems of underestimation in the conch 

data were magnified into large errors in most production model estimates. Not all 

parameter estimates were affected equally by underreporting, similar to the results from 

Zhang (2013) that showed that the accuracy of one parameter estimate is not reflected in 

another. 

In general, decreasing trends in the underestimation of catch and effort at the 

beginning or end of the time series for the pike models and decreasing trend at the end for 

the swordfish models appeared to cause the simulations to perform the poorest. Small 

changes in catch and effort for the decreasing trends, particularly for DecreaseEnd, were 

magnified into large errors. A decreasing trend may become more common in fisheries 

because underreporting can continue to improve. This finding is disconcerting given 

these efforts. For example, decreased bycatch mortality and unaccounted fishing effort, 

better reporting rates due to increased observer coverage, or improved log book 

recordings, and decreased illegal fishing can help improve the accuracy of catch and 

effort data.  

Positive and negative errors in parameter and ratio estimates can have different 

implications depending on the fishery. In general, a negative percent error for Fmsy is 

safe for managment because the supposed Fmsy is smaller than the true Fmsy, resulting 
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in under fishing. Similarly, a positive percent error for Bmsy is not risky because fishery 

management would be aiming for a higher stock biomass than the true Bmsy. General 

patterns are more difficult to describe for the ratios, B/Bmsy and F/Fmsy, and are 

explained case by case based on results from this study. 

Case 1: Overall, in a fishery with a lightly exploited stock, for example northern 

pike in Mille Lacs Lake, a positive or negative error may not drastically change the 

perceived status of the stock. If the true F/Fmsy is always less than one (overfishing is 

not occurring), then a negative error in F/Fmsy means the fishery is obtaining a higher 

fishing mortality ratio than what is supposed. However, in this case as previously stated, 

fishing mortality will still be lower than Fmsy. This is also true for B/Bmsy ratio when 

B/Bmsy is always greater than one. A negative or positive error in B/Bmsy results in safe 

cases because the biomass is always higher than the targeted biomass. As a result, trends 

in underestimation of catch and effort may not be detrimental to the fishery, but potential 

yield will be foregone. 

Case 2: For constantly heavily exploited stocks, underestimation of catch and 

effort results in a poor situation for the fishery. When the true F/Fmsy is always greater 

than one, a negative error gives rise to risk because the true F/Fmsy is higher than 

supposed. In contrast, a positive error in the estimate of F/Fmsy suggests that the fishing 

mortality is not quite as high compared to Fmsy as calculated, alleviating a little fishing 

pressure. When B/Bmsy is always less than one, the opposing cases are true. A positive 

error results in a more severe situation because the true Bmsy is actually lower than the 

predicted. A negative error for B/Bmsy implies that fishery managers believe the biomass 
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of the stock is worse than the actual true biomass compared to the relative Bmsy, yet the 

biomass is still lower than the optimal level. 

Case 3: In well-managed fisheries, such as the North Atlantic swordfish fishery, 

where catch is close to targeted MSY levels, the direction of error is difficult to predict 

for F/Fmsy and B/Bmsy when catch and effort are underestimated. Each situation is 

unique. For example, if the scenario F/Fmsy is less than one, but the true F/Fmsy is 

greater than one, the percent error is negative. This would result in an unfavorable 

situation because fishery managers would conclude the stock is doing well when in 

reality overfishing is occurring. In summary, with a well-managed stock the significance 

of a positive or negative error for the parameter and ratio estimates is case specific.  

 Each species responded differently to the various trend scenarios. Swordfish 

models appeared to be more robust to changes in catch and effort based on the smaller 

and more intuitive errors, whereas pike models had some different trends in errors from 

the swordfish depending on the scenario. Conch models had large errors as well as 

unclear patterns in the errors. A possible explanation for the different results could be 

differences in exploitation history of each fishery. For example, the original Turks and 

Caicos queen conch production model has low contrast in fishing effort and was unstable 

possibly due to the lack of contrast in catch and effort. It appeared that better fitting 

models with high contrast (i.e., swordfish production models) are more robust to changes 

in catch and effort compared to poorly fitting models (i.e., queen conch). Examination of 

additional examples would help to establish the validity of this hypothesis. In addition, 

North Atlantic swordfish has the longest time series, totaling 62 years, which starts prior 

to the heavy exploitation of this species (Anon. 2010). As a result, the relatively long 
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time series begins close to the carrying capacity, K, of the stock and goes through periods 

of high and low catch and effort. In contrast, the northern pike in Mille Lacs Lake 

supports a recreational fishery as well as a secondary fishery to the local tribes with a 

shorter time series totaling 27 years. Regulations on size and bag limits for the 

recreational fishery were also added over time (M. Luehring, Minnesota Department of 

Natural Resources, pers. comm.). Thus, a number of possibilities could have influenced 

the model outcomes for each species when catch and effort are underestimated. 

Consistent higher or lower parameter and ratio estimates compared to the true 

MSY-based targets can lead to misguided management strategies. In particular at low 

abundance levels, overestimating biomass or underestimating fishing mortality due to 

underestimated catch and effort can potentially lead to severe consequences such as 

hyperstability followed by stock depletion (Hilborn and Walters 1992; Roa-Ureta 2012). 

Although this situation may be rare, managing when there are trends in the 

underestimation of catch and effort can lead to problems and could potentially lead to 

hyperstability situation. 

For data-poor species, I recommend conducting simulations of a variety of 

possible scenarios when catch and effort are believed to be underestimated in a surplus 

production model. Each model may respond differently to changes in catch and effort, 

and as a result these simulations can provide insight on how specific parameter and ratio 

estimates may be affected by underreporting. Simulations can help determine which 

estimates are robust to underestimation of catch and effort. Thus, changes in the 

parameter and ratio estimates from the simulations can potentially be used as 

precautionary benchmarks for the management of a specific stock.
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Table 1. Top 10 cases with the largest % error for all estimated parameters and ratios 

from swordfish and pike production models (bold typeface) and compared to the 

corresponding swordfish or northern pike model estimates. Decreasing trend at the 

beginning of the time series is denoted as DecreaseBegin, and decreasing trend at the end 

of time series as DecreaseEnd followed by the percent of increase or decrease each year 

(% Inc or Dec). 

   % Error 

 

Scenario 

% Inc or 

Dec Swordfish Pike 

1 DecreaseBeg 3 % 0.07 5732 

2 DecreaseBeg 3 % 0.02 2348 

3 DecreaseBeg 2 % 0.05 505 

4 DecreaseEnd 2 % 193 38 

5 DecreaseBeg 2 % 0.01 189 

6 DecreaseEnd 3 % 126 145 

7 DecreaseEnd 3 % 126 145 

8 DecreaseEnd 3 % -20 98 

9 DecreaseBeg 3 % 0.34 -98 

10 DecreaseBeg 3 % -0.04 89 

 

  



 

70 
 

 

Figure 1. Changes in the simulation runs with the datasets. The percent of the 

underestimation of catch and effort for compared to the “true” catch and effort at 100% 

(grey line) for each of the eight groups. Note: The trends of (7) ExpIncreaseBegin and (8) 

ExpIncreaseEnd are similar to (2) IncreaseBeginCont and (4) IncreaseEnd respectively, 

and were not plotted. 
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Figure 2. Estimates from the production models of individual parameters and parameter 

ratios for scenarios of constant percent underestimation of catch and effort for North 

Atlantic swordfish, northern pike and queen conch.  For each panel, the scenarios from 

bottom to top are: 0%, 10%, 20%, 30%, 40% and 50% underestimation of catch and 

effort throughout the time series. 
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Figure 3. Biomass estimates from the production models for swordfish (row 1), queen 

conch (row 2) and northern pike (row 3), where each column presents a family of 

scenarios of underestimation of catch and effort. The first column is for constant 

underestimation throughout the time series (a, d, g). Second column is increasing trend of 

underestimation (b, e, h). Third column is decreasing trend of underestimation (c, f, i). 

Grey line in each panel indicates the base or “true” biomass estimate. 
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Figure 4. Parameter and ratio estimates from the production models for constant and 

increasing trends in underestimation of catch and effort for North Atlantic swordfish, 

northern pike and queen conch. Constant percent underestimation scenarios (10%, 

20%...50% from top to bottom in each panel) are represented by open circles. Increasing 

trends at the beginning of the time series (1%, 2% and 3% from top to bottom) with 

constant underestimation for the rest of the time series (IncreaseBeginCont) are the filled 

circles. Increasing trends at the beginning of the time series (1%, 2%, 3% from top to 

bottom) with no underestimation of catch and effort after the first 15 years 

(IncBDeginStop) are the open squares. Filled squares are the increasing trend at the end 

of the time series (IncreaseEnd) for 1%, 2%, and 3%. The X’s mark % error greater than 

100% error. 
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Figure 5. The production model parameter and ratio estimates for North Atlantic 

swordfish, northern pike and queen conch for increasing and decreasing trends in 

underestimation of catch and effort throughout the time series. Open circles are constant 

underestimation (Constant). Decreasing trend at the beginning of the time series for 1%, 

2% and 3% (DecreaseBegin) are represented by open triangles from top to bottom. 

Decreasing trend at the end of the time series for 1%, 2% and 3% (DecreaseEnd) are 

filled triangles from top to bottom. 
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CONCLUSION 
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The goals of this thesis were to 1) provide further information on the movement 

and behavior of cownose rays from the Chesapeake Bay, and 2) understand how surplus 

production models respond to underestimation of catch and effort. It is important to 

understand movement patterns, behavior patterns and the basic biology of a species in 

order to make the best informed management decisions. Similarly, knowing how 

assessment models may perform under suboptimal conditions is vital fished populations 

at sustainable levels. 

 In Chapter 2, I verified the wintering grounds for the female and male cownose 

rays as well as provided insight on the movements of male rays who mate in Chesapeake 

Bay. Both sexes of rays are found off the coast of central Florida in December, similar to 

the location discovered by Grusha (2005). However, it appears that this population of 

rays did not migrate farther south, around Florida, and into the Gulf of Mexico. This 

could suggest a physical barrier that prevents movement into the gulf area. Previous 

genetic work demonstrated that the Atlantic and Gulf of Mexico cownose rays are at least 

two distinct stocks (McDowell and Fisher 2013). Neer and Thompson (2005) also found 

differences in life history characteristics suggesting little mixing between the two 

populations. However, recent genetic work distinguished two separate species in the Gulf 

of Mexico, R. bonasus and R. brasiliensis (J. McDowell, pers.l comm.), which may 

account for some of the differences in the life history characteristics.  

Although the Atlantic cownose rays are seen farther north, around Cape Cod, it 

was surprising to discover that male cownose rays that mate in the Chesapeake Bay 

continue north to off the coast of Rhode Island and Long Island, New York. With this 

new finding, there is more work that needs to be completed to better understand male 
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cownose ray movements and behavior, and whether males from other bays along the 

Atlantic coast follow a similar summer movement pattern. In addition, rays tagged in this 

study were fairly tolerant to a wide range of temperatures and were able to endure colder 

temperatures for short periods of time.   

The amount of data I was able to recover from each of the satellite archival tags 

varied. The tags that were prematurely released inside Chesapeake Bay were not included 

in the analysis because the main objectives were large scale movements and behavior. 

Moreover, I could not retrieve any useful light level data when the ray was inside of the 

bay. PSATs were originally designed for large pelagic fish in the open ocean where there 

are fewer factors that can influence the light-level curves. Although the light levels were 

recorded when the tag was near the surface, there were many factors in the coastal waters 

that could have caused errors in the light level readings. Some factors that could have 

affected the light level readings include turbidity, subaquatic vegetation, such as sea 

grass, shadows from land and docks, and weather.  

Pop-up satellite tags are best used for long movement patterns with pelagic 

species and generally are not the most useful electronic tagging tool for fine scale 

movements of nearshore species. Exact timing of movements and movement inside the 

Chesapeake Bay would be better estimated by another device such as acoustic tagging. 

The most probable tracks from the WC-GPE3 program did suggest that tagged rays 

occasionally went farther offshore, past the continental shelf. Based on the rays diving 

patterns and assuming that many of the dives were to feed on benthic organisms, the 

geolocations estimated off the continental shelf area seem unlikely. Nevertheless, the 

overall most probable tracks appeared to capture the general movements of the rays. 
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Ultimately, movement patterns of the cownose rays from the Chesapeake Bat will aid in 

the management of this species to help determine whether and where a fishery could be 

sustainable. 

In Chapter 3, I discussed the need to understand problems with the data input and 

the effect on a basic surplus production models. I determined that constant 

underestimation of catch and effort is manageable. The parameter estimated by the 

production model either produced no error (i.e., Fmsy, Flast, Flast/Fmsy, and 

Bnext/Bmsy) or the error was the same percentage lower as the underreporting (i.e., 

Bmsy, Bnext and MSY). In contrast, trends in underestimation of catch and effort 

throughout the time series, which is a more likely scenario than constant underreporting, 

resulted in little to no pattern and the outcomes were fishery dependent. Each scenario 

produced different results, thus trends in underestimation can lead to problems when 

management is only based on the production model parameter estimates. In particular, 

decreasing trends over time (improved reporting rates) produced the largest errors. As a 

result, I would suggest taking precautions when underestimation of catch and effort are 

thought to occur.  

The results from this study will improve the knowledge on how surplus 

production models are affected when there are changes to the data input. In addition, two 

of the fishery examples used in this study, Northern pike from Mille Lacs Lake, 

Minnesota, and queen conch from the Turks and Caicos Islands have benefitted from 

these results. In Mille Lacs Lake, it was thought that additional bycatch mortality may 

change the parameter estimates from the production model. In the queen conch fishery, 

the catch and effort from local consumption was not included in the original assessment. 
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Thus, in both cases, it was originally believed that the catch and effort from the bycatch 

and local consumption were excluded by the same percentage throughout the time series 

representing a constant underestimation of catch and effort scenario. There are many 

data-poor fisheries that potentially have underreporting of catch and effort that can 

benefit from the simulations conducted in Chapter 3.  
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